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Abstract 

A method is proposed that allows a variance estima- 
tion for interatomic distances in the case of a one- 
dimensional incommensurate (or commensurate) dis- 
placively modulated structure to be derived. This method 
takes into account the covariance terms in the vari- 
ance-covariance matrix Y? of the atomic pair, resulting 
from true linear relations between some positional pa- 
rameters. These linear relations, arising in the case of 
symmetry-related atoms or in the case of special posi- 
tions in crystals of high symmetry (trigonal, tetragonal or 
hexagonal systems), are carefully scrutinized. The results 
of these linear relations on the ~ matrix are specified 
for any order of the Fourier expansion of the modulated 
displacements and some examples of matrices are given. 
A general formula written in matrix form is then de- 
rived for the bond-length variance. This method is then 
exemplified by different typical examples, showing the 
usefulness of such a calculation for the comparison of 
different results or for the discussion of the significance 
of some interatomic distance variations. 

I. Introduction 

The determination of uncertainty for physical parameters 
refined from least-squares methods is important as it 
gives a range of significance for the corresponding 
results in relation to the actual values, which cannot 
be measured directly but are derived from the analysis 
of a set of measured data. For interatomic distances, 
the final result is obtained from a refinement process 
using refined structural parameters from experimental 
data through a functional relationship. The square root 
of the attached variance term characterizing the accuracy 
of this structural secondary parameter is defined as the 
combined standard uncertainty (c.s.u.), previously called 
estimated standard deviation (e.s.d.) (Schwarzenbach, 
Abrahams, Hack, Prince & Wilson, 1995). A structural 
study will be reliable if one can state that the actual 
values of the derived structural parameters lie in an 
interval centred at the refined value and with a width 
proportional to the c.s.u. However, the c.s.u, values that 
can be calculated from the previous analysis suppose that 
the model is adequate and that the chosen parameters on 
the whole can accurately describe the real structure. It 

is well known, for example, that the calculated c.s.u. 
for the cell parameters of a single crystal determined 
from a four-circle goniometer measurement or for the 
thermal-motion parameters refined from a global pro- 
file analysis of a powder diffraction pattern are often 
underestimated; two independent measurements or two 
refinements using different profile or background models 
can give incompatible results within the range of their 
C.S.U. 

Nevertheless, for structural studies, it is important to 
validate a refinement procedure with a critical exami- 
nation of the derived parameters (e.g. thermal-motion 
or site-occupancy parameters) or of the secondary pa- 
rameters (e.g. interatomic distances or bond lengths) 
that can be compared and should be compatible with 
known standard values within the range of their c.s.u.s. 
For a crystal that exhibits a displacive modulation, a 
variance estimation of interatomic distances is partic- 
ularly interesting. In fact, because of the modulation 
and in particular in the case of an incommensurate 
modulation, the structural model involves a variation 
of the interatomic distances throughout the crystal. If 
large variations are observed, it is most important to 
know if the results are consistent with the type of 
chemical bond or with the chemical coordination of 
the species. On the contrary, if only small variations 
are observed, one has to decide about the real signifi- 
cance of these variations. Interatomic distances are not 
always tabulated as a function of the internal phase 
variable, even if it is important to check the poten- 
tial validity of structural results from the values for 
interatomic distances in any cell of the modulated crys- 
tal. 

To perform these statistical tests, the c.s.u, of the 
interatomic distances are required. A method has been 
suggested by D. E. Sands (1966) to compute bond-length 
and bond-angle variances in non-modulated crystals. It 
takes into account the possible linear relations occurring 
between the coordinates of symmetry-related atoms or of 
atoms on special Wyckoff positions through covariance 
terms. This type of calculation has not always been used 
in the available computer programs for interatomic dis- 
tance calculation, so, for example, symmetry-equivalent 
interatomic distances are not always calculated with the 
sa l i l e  c . s . u .  
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This method may also be used in the case of dis- 
placively modulated crystals. Then, two types of parame- 
ter have to be considered: the average atomic coordinates 
and the Fourier terms describing the periodic displace- 
ments from the average position. In the general case of 
a d-dimensional modulation, these displacements are a 
function of d variables, the so-called internal parameters 
(de Wolff, Janssen & Janner, 1981). If the modulation 
is one dimensional, the number of Fourier terms per 
atom is six for a given harmonic of order n. As a 
result, the rank of the variance-covariance matrix Z' 
related to a given atomic pair is larger than in the 
usual case [2(3 + 6m) against 2 × 3, where m is the 
number of harmonics introduced in the model]. For 
a crystal of high symmetry (in trigonal, tetragonal or 
hexagonal systems for a one-dimensional modulation), 
linear relations may be involved both between average 
coordinates and between Fourier terms. Two cases are 
to be considered: one of the atoms of the pair either is 
generated from another one in a general position by a 
symmetry operator or lies in a special position in the 
average structure. The resulting linear links then induce 
covariance terms in the S matrix. The expression of the 
covariance terms related to the average coordinates is 
easy to write. As expected, the main difficulty is to find 
a general formula describing the possible linear relations 
between the Fourier terms with the aim of deriving the 
corresponding covariance terms for the generalized ~' 
matrix. Such relations have already been established for 
monoincommensurate modulated structures (Petricek & 
Coppens, 1988). In the present paper, the consequences 
on the variance-covariance matrices are considered in 
relation to the symmetry conditions of a given atomic 
pair and a method of calculating the interatomic distance 
c.s.u, is proposed. 

2. Main assumptions and 
methodological considerations 

Before defining how the bond-length variances can be 
derived from the variances of the refined parameters, let 
us first recall some results concerning general statistical 
properties and the description of modulated crystals. 

2.1. Statistical properties 

If we consider a non-linear function 
f (Pl ,P2 . . . . .  Pi . . . .  ) of several random variables 
Pi, it is possible to give an estimation of the variance 
of f, v a r ( f ) =  or}, by using the first two terms of 
the Taylor expansion of f about the mean values (Pi) 
(Schwarzenbach et al., 1995): 

cI~ ~_ F_,(Of/OPi)2 var(pi) 
i 

+ ~_, ~_,[(Of/OPi)(Of/Opj)l cov(Pi, pj). 
i j ¢ i  

(1) 

This relation can be expressed in matrix form as 

<GI IG), (2) 

where Z' is the variance-covariance 
matrix associated with the parameters Pi, 
(G I = (Of/dPl, Of/dP2 . . . . .  Of/dPi . . . .  ) and I ' )  
is the transpose of (G]. The derived expression for # 
is valid assuming a small dispersion of the random 
var i ab le s ,  Pi, around their mean values. Another 
possible method involves expressing f only as a 
function of rigorously independent parameters chosen 
among the parameters Pr Consequently, (1) is much 
simpler, without covariance terms and the new S '  
matrix is smaller and diagonal. The similarity between 
the two methods is shown in Appendix A. This last 
method is perhaps easier in particular cases but requires 
simple relations between dependent parameters, which 
are not always easy to derive. 

2.2. Modulated crystals 

In a one-dimensionally modulated crystal, the dis- 
placive modulation of the ith atom is described with 
a periodic vec to r  field U i, a function of the internal 

i = q * .  (~).jr_ p) ,  where q* is the modula- parameter x 4 
is the average position of the ith atom tion vector, r 0 

in the origin unit cell and p is a direct-lattice vector 
(Janssen, Janner, Looijenga-Vos & de Wolff, 1992). q* 
may include a rational part qr '  SO that q* -- qr + qir" The 
components U~ of U i are expanded in Fourier series up 
to the mth order, which is usually the maximum order 
observed for the satellite reflections in the experimental 
diffraction pattern. 

Ui~(t ) = ~ { A i , ,  cos[27rn(~, + t)l 
n=l 

+ B i sin[27rn(t/0 + t)]}, 
Ot, H (3) 

where c~ = 1,2,3; t~ q.  i = • i = • ro_ - q,~x~ (summation 
i is the c~ component with Einstein's convention) and x,~ 

of the average position r/0; and t = q* • p is (modulo 1) 
a dense set of real numbers on the [0, 1 ] interval in the 
incommensurate case. The actual position of the ith atom 
in the p unit cell is then given by 

i --7- +Pa  +uilt~'a~} X(~ = Xc~ (4) 

If the atomic pair of interest is denoted as i,j, the 
square of the corresponding interatomic distance can be 
expressed by 

d2= <XIglX , (5) 

where g is the metric t e n s o r  (gkl = ak " at, {ak} the 
unit-cell basic vectors) and (X[ = (XI,X2, X3) with 
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To obtain a convenient form for the vari- 
ance-covariance matrix 57 of the parameters related 
to the considered atomic pair, the following order is 
chosen for the different variables: 

Xil , xi2 , X~ , A i A i A i B i B i B i 
1, 1, 2, 1, 3, 1, 1, 1, 2, 1, 3, 1, ' '  " ,  

A i i A i Ri  B i B i 
l , m , A 2 ,  m, 3, m ' ' l , m '  2, m' 3, m' 

x~,xJ,  x i , A J  " A j • . Bj I,l 'A~,l ' 3 , 1 ,  n ~ ,  l ,  n2J, 1 , 3 ,1  . . . . .  

A j A j A J m ,  B / ,  B j B j l , m '  2, m '  3, m '  2, m '  3, m" 

From (2), a variance estimation of the interatomic 
distance can be derived if the correct variance and 
covariance terms are introduced in the 27 matrix, remem- 
bering that the components of (al are the derivatives of 
d with respect to the previous variables. 

2.3. Simpli fying hypotheses  and  approximat ions  

The determination of the c.s.u, for bond lengths or 
interatomic distances proposed in this paper is restricted 
to the case where the displacive modulation is one 
dimensional. Our aim is to describe a variance analysis 
as a function of the linear relations between positional 
parameters. Preliminary approximations can be carried 
out. 

As is well known, on refining the independent param- 
eters by least squares, unbiased estimates are obtained 
for the elements of the variance--covariance matrix V 
(Hamilton, 1964), providing the model is good. The 
covariance terms resulting from correlations between the 
so-called 'independent' parameters should be considered 
in the analysis of the bond-length variances. However, 
relatively small values can usually be expected for the 
correlation coefficients Pk, t, particularly for positional 
parameters, assuming that the crystal does not display 
any pseudosymmetrical character. Moreover, it is likely 
that a balanced proportion of positive and negative val- 
ues occurs for the Pk, t coefficients, thereby minimizing 
their influence in the calculation of variances. Hence, in 
the following discussion, these covariance terms that do 
not correspond to true linear relations between positional 
parameters are neglected. If necessary, they could also 
be introduced. 

The cell parameters and components of the mod- 
ulation vector q* are usually accurately known. The 
corresponding variance terms are supposed to be neg- 
ligible in the present study. We can, therefore, limit our 
analysis to the refined positional parameters. 

3. Determination of the £7 matrix 

In the most favourable case of two independent atoms 
in general positions, the 57 matrix has a diagonal form 
composed of the different variance terms of mutually 
independent variables. However, it is often necessary 

to consider more complex but not untypical cases that 
involve linear relations between the previous variables. 
Consequently, it becomes necessary to modify the sim- 
ple diagonal form by adding covariance terms. Different 
cases can be distinguished: 

(a) The atoms i and j are not symmetry related: 
27 is then compose d of diagonal blocks of matrices 
M i, sil . . . . .  S',~ . . . . .  S' m, M/, S~ . . . . .  S j . . . . .  S: m, where M i 

(3 × 3) and S', (6 × 6) are variance-covariance matrices 
related to the average coordinates and to the Fourier 
terms of the nth harmonic, respectively. Covariance 
terms may be involved only in the M and S,, matrix 
of each of these atoms for crystals of high symmetry 
(HSC); in this case, the principal rotation axis will 
be supposed to be parallel to the x 3 direction. Three 
subcases occur: 

(a 1) one atom of the pair (or both) is (are) on a special 
position in the average structure; 

(a2) one of the atoms does not belong to the list, 
noted (L), of the 'independent atoms' of the structure 
refinement. It is, therefore, generated from an atom # in a 
general position by a given symmetry operator, denoted 
(R, s), belonging to the symmetry space group associated 
with the average structure; 

(a3) the third case is a combination of the first two: 
the atom i, on a special position in the average structure, 
is generated from another atom # of the list (L). 

(b) The atoms i and j are symmetry related: ad- 
ditional covariance terms have to be included in the 
27i, j part of the 57 matrix (27i, j : ,~ j , i ) .  The 57i, j 
part is then composed of diagonal blocks of matrices 
N, P1 . . . .  , Pn . . . . .  Pm" 

3.1. The M matr ix  

3.1.1. Case (al) .  Some special positions only im- 
pose a constant rational value for some components 
of the average position of the considered atoms. The 
corresponding positional parameter simp_~, disappears 

; coordinates but, in HSC, linear relations between the x~ 
may be involved. It is e___~y to__see that they can be 
written in a general form x//~ -- cpx/, where qo is a rational 
number; then, the M ~ matrix can easily be written using 
the relations 

- :  cov(x , ) - 
(6) 

3.1.2. Case (a2). The expression for M i does not 
depend on the possible glide vector, s, associated with 
R. M / is deduced from M ~', which is then a diagonal 
matrix, by the classical formula: 

M / = RM"R, (7) 

where R is the transpose of R. The terms of M ~ are given 
by a single expression: 
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cov( , v)  - < <  
(Einstein' s convention). (8) 

The variance terms are of course obtained for a = ft. 
3.1.3. Case (a3). This case is a generalization of 

(7), with M ~' not diagonal, but with the form (6): 

var(~~) =(Ra,--1- qoR~2)2 var(x---i p) 

f o r a =  1 and2  

var(~-3~) = var(~-~-~') (9) 

COV(7,~22 ) = [RIIR2I -Jr- qD(RIIR22 -1 I- RI2R2I ) 

-1 t- qoaR12R22] vat (~IL) • 

3.1.4. Typical examples. Let us give some typical 
examples illustrating the calculus of 0.2 from (2). For 
simplicity, consider an unmodulated hexagonal crystal 
(space group P6mm) with two equivalent atomic pairs 
i, # and i,j; the atom i is at the origin of the coordinates 
and the atom j is generated from the atom # belonging 
to L by a rotation R of 2rr/6 about c. Let us look at the 
following cases: 

(i) the atom # is in a general position in the a, b 
plane (z t* = 0); 

(ii) the atom # is in the special position 2xU, x j', O. 
The 17 matrix related to the pair i, # can be reduced 

to the M u matrix. 
In the first case, M ~' is diagonal since x ~' and yU are 

independent variables; (2) leads to 

0.2 __ ( Od/ OxU ) 2 0.2 _+_ ( Od / Oyt, ) 2 0.2 
di. t' 

= (a4/4d2)[(2x,~ _ y.)20.2 + (2y" - x")20.2.]. 

(10) 

The S' matrix related to the pair i , j  can also be 
reduced to the M j = RMUR matrix. Then, 

0 .2 = (Od/oqxJ)2(o'2. + 0.-)2, u) -Jr- 2(Od/OxJ)(Od/OyJ)0.2. 
d i . j  

+ (Od/OyJ)2o'2. 

= (a4/4d2){[(x" - 2yU) 2 + 2(x" - 2yU)(x" + yl*) 

+(x"+yU)2]0.2x,, + (x" - 2y")20.2,, }. (11) 

This variance is 2 equal to 0.d , as expected. 
• '~,"-lt 4 2 M I, 2 and In the second case, since/I//i i = Ox., 22 = °x .  

M;2 = 2o-2 • 

2 Od 2 ____Od Od 20.x2 ' + 0.x,.2 
0.d,,, = 40.2. + 2 0XU Oy~, 

(12) 
with X" = 2x" and yu = xU; the very simple expression 

0.2 = 3 a  20.2 (13) 
di,  ~, 

is then obtained, which can of course be derived directly 
by writing d, u as a function of x ~'. 

2 , M~ 2 = 40.2 It is easy to find from (7) that M{l = o'x, 
and M~2 = 2cr2,,. From (2), the variance of di, j 

2 20.2, 4 a 2  
d , , =  ~ - 7  ax" + 2 - -  + 

, OX j OY j - ~  
(14) 

with X j = x ~' and YJ  = 2x u is equal to 0.2i," , as expected. 

3.2. The S~ matrix 

In a one-dimensional modulated crystal, the displacive 
modulation functions U j~ and U" associated with two 
atoms # and u, symmetry related by the operator (R, s) 
in the average structure, are interdependent according to 
the relation 

= R U  t` e ~ - 7 - + m  .r 0 - q r  (15) 

where e = +1 satisfies the condition R q i * -  eqi*  - -  
0; 7- is a phase shift in the internal space associ- 
ated with the symmetry operator; m* -- eq* - R - l q  * = 
e q * - R - l q  *. The rational part q* of q* involves a 
centring of the four-dimensional unit cell in R 4. It is 
always possible to do an appropriate basis transformation 
that leads to a zero value for q*. Then, the previous 
relation can be written in the simpler form 

(16) 

----y 
with x 4 = t~ +t. This relation associated with (3) leads to 

UU~ ( t) -- R,~3 y~ { ( c.A~. n - esnB~, n) cos[27rn( # o + t)] 
tl 

+ (s .a~ . .  + ecB~. . ) s in[27rn(#  0 + t)]} (17) 

with c,, = cos(27rn7.) and s. -- sin(27rnT.), allowing A ~' Or, ?l 

and B",~,n to be given as a function of A~, n and B~, n: 

= - es,(R flB .,) 

B u",. = s,(Ra A . , )  + ecn(R  B , n)" 
(18) 

These relations (18) can be written in matrix form: 

IU> = ILIY ) (19) 

f CnR -CSnR ) 
with T. = \ s . R  ec .R 

(A l, n, A2. n' A3. n' Bl, n' B2. ,,' B3. n)" 

and I L l  - 
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Then, in a similar way to (7), the S~ matrix can be 
related to that of S~: 

S~ = T~S~T n. (20) 

The different previously defined cases are also con- 
sidered now. 

In case (a2), sin is easily determined from (20) with 
u = i because the variance terms of S~ are directly found 
in the V matrix. In the other cases (with i = # or i ~ /z) ,  
S~ has to be derived taking into account the possible 
linear relations between the Fourier terms. 

Let us consider the action of symmetry constraints on 
the Fourier terms of the atom #, assumed to be located on 
a special position in the average structure. Denoting the 
point-group symmetry of this site by PS, the constraints 
are then found by writing the invariance of U u under 
the action of the generator operations (R, el'r ) acting in 
R 4, associated with the generator operation R of PS (de 
Wolff et al., 1981). For each generator operation, the 
relation 

has to be satisfied; it turns out that the Fourier terms of 
the nth harmonic are found by solving 

]T~iY~U) = ]Y~). (21) 

From our choice of axis, U 1 and U 2 do not depend 
on U 3, and the condition (21) can be expressed from the 
two equations 

I T  n - ! ' I lY,)--10)  (22) 
II I/  iJ. 

IT~ - I Iz n) = 10) (23) 

with 

) ) T'~ = \ s . R '  ec. ' = \R21 R22 ' 

T,, (c~ -es , ,  ) 
= R33 s n CC n ' 

(Y,"I-- ( A ~  'au2` ~' B~ n, B2, n), 

(z". l = 

and I ' ,  I"  are the unit matrices (4 x 4) and (2 × 2), 
respectively. 

If the determinant A I ~ -  I '  I ~ 0, then U~' - U~' = O. 
If AIT ff - I"  I # 0, then U~ = 0. 
Some trivial cases may occur when both s~ = 0 and 

Cn Rt - I t :  0 (or R33c n - I t t :  0). This leads to zero 
values for all the elements of the matrix T ' -  I '  or 
T f f - I " .  Such cases do not impose any constraint on 
the Fourier terms and are not of interest here. 

If A = 0, then, within a given harmonic, the sym- 
metry constraints bring about the cancellation of some 
Fourier terms or linear relations between them (for 
HSC). 

Let us first consider the usual case where a single 
symmetry element is involved in PS. The possible linear 
relations are derived from (22) and (23). 

For e = + 1, the linear relations between the Fourier 
terms can always be written in the following way: 

A~,,  = OZnA~, n -'}- ~:]nB~,n (24) 

Bu = -[3,~A~ + %B~,,, (25) l , n  , n  ' 

where the coefficients %, and/}n are functions of s,,, c,, 
and R. 

In this case, A~ ,, and B~. ,, are always independent. 
For e - - 1 ,  several forms of linear relations may be 

involved: 
(i) a u _,At '  and B~ ,, i, 1. n - -  t t n ~ 2 ,  n , = &, Be. ,  simultaneously 

f/ I .  with &,, -- -o~,,, 
/ I I. . (ii) All',, = c~,a2, . ,  

(iii) B~,, = ^,,o,, . ¢~n 0 2 ,  n ' 

( i v )  a t~ = ~ n B ~  3,71 . , n "  

In the first three cases, no linear dependence is 
involved between A~ ,~ and B~ ,,, whereas, in case (iv), 
au  _ a t .  - n u n  22B~.n = 0 "  All these l ineardepen- 
" A l , n  - -  " 1 2 ,  n - -  '~ '1,  _, 

dences are tabulated in Appendix B. 
The various matrices Sff were derived taking into ac- 

count the previous linear relations (Table 1). For e = + 1, 
the Fourier terms A ~' and B u 2, n 2. ,, are arbitrarily chosen 
as reference terms and, consequently, are considered as 
independent parameters in the refinement. A zero value 

, B u is, therefore, attributed to cov(A~' n, 2. n). 
Let us now consider the case where several symmetry 

elements are simultaneously involved in PS. The sym- 
metry point groups that lead to linear relations between 
some Fourier terms (HSC) can be found by consid- 
ering the appropriate associated symmetry in internal 
space, i.e. by looking at the possible 4D superspace 
groups for a one-dimensional modulation (de Wolff et 
al., 1981; Janssen et al., 1992). The following point 
groups are involved: 622, 422, 32, 222, ram2, m m m  and 
2 /m.  Two  cases occur depending on whether the linear 
dependence(s) related to one symmetry element is (are) 
maintained or reduced. The corresponding S~ matrix can 
easily be derived from the variance-covariance matrices 
written in Table 1. 

3.3. The ~ matrix 

The next step is now to write the L" matrix related to 
the atomic pair i , j  in all the relevant cases. 

3.3.1. Case (a). Some typical examples, involving 
4D symmetry described by standard superspace groups, 
are given in Table 2. Only the ~,i. ; part of Z' is written, 
assuming a modulation described by a single harmonic. 
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Table 1. Sn matrices for atoms in special positions with only one symmetry operation in the point group of the 
atomic site 

(a) ~ = +1 

A2. n. B2. n, A3. n and B3. n are independent  parameters.  A l . ,  = onA2.  n + 3nB2. n; B1. n = - ~ n A 2 .  n + OnB2. n" 

A l . n  

A2. n 

A3. n 

B I . n  

B2. n 

B3. n 

The o n 

A1. n A2. n A3. n BI.  n B2. n B3. n 

2 2 ," 2 2 Ono-2 0 (lnO'A2. ,, "-t- ~n O'B2. n _, n 
a 2 0 

A2. n 

0"23. n 

O ' n C J n ( ~ 2 2 - - 0  "2 ) 3n0"22. 0 .n A2. n n 
--1"4na22.. 0 0 

0 0 0 

.2  2 2 2 (.T n O'2B2, 0 3nfTA2.. + OnOrB2. n n 

O-22. n 0 

0"23. n 

and 3 n coefficients can be easily derived from the knowledge of  the symmetry  operator  (R. c, r )  using equation (22). 

(b) c = --1 

(i) Hexagonal .  trigonal or tetragonal systems: symmetry  operation ( 2 x ' ~ x ' 0 ) ,  

A2, n, B2, n, A3, n and B3, n are independent parameters.  Al. n = :kA2. n and Bi, n 

A I . n  

A2. n 

A3. n 

B I .n  

B2. n 

B3. n 

A l . n  A2. n A3. n B l . n  B2. n B3. n 

o1 ± %  o o o o 
-. n n 

a2A2. , 0 0 0 0 

a2A~. ~ 0 0 0 

('722. n ZFor22, n 0 

a22. n 0 

0"23. n 

(ii> Hexagonal  system: symmetry  operations ( 2 ~ ' ° ) ,  

B i . n .  A2. n, B2. n, A3. n and B3. n 
( 3 + c h R i s ) ~ 2 ;  t~ = 3 -- A. 

A l . n  

A2. n 

A3. n 

BI .n  

B2. n 

B3. n 

r = 0 o r  r = 1/2.  

= q:B2, n" 

T :  1 /2;  (20"f"O ) ,  r : , / 2 ;  (22x-~*'0 ) ,  

are independent  parameters. A i, . = anA2, n 

A I . n  A2,,, A3. n B I .n  B2. n 

. t 2 ~ 2  t 2 Ot n O', 0 (*n UA2. n "~2. n 
0"22.. 0 

0"13. n 

0 0 

0 0 

0 0 

a 2 0 
BI. n 

O.2 
B2.. 

,y==:,ymmetry o p e . ' - -  

A i . n ,  A2. n. B2. n. A3. n and B3. n are independent  parameters.  BI. n 
( 3 + G R I I ) / 2 ;  l* = 3 -- A. 

A l . n  

A2, n 

A3, n 

B I ,n  

B2, n 

B3, n 

n3, n 

0 

0 

0 

0 

0 

0"23, . 

r--O; (2°'f"O ), r = O; 

= <)n B2. n 

with o "  = [(1 - - c . R A x ) / c n R ~ , ]  ( - l ) ~  and A = 

A I. n A2. n A3. n HI. n B2. n B3. n 

a2t. ,, 0 0 0 0 0 

°12. n 0 0 0 0 

a23. ,, 0 0 0 
tt2~2 . . i t _2  

(tt n t* B'~ n 2. n -. t) n t'tJ 0 

a22, . 0 

o-23. n 

(2 , ro )  T= ,,2, (2 T= , ,  

with <"n' = --[(1 + c ,  R t , , , ) / c n R ,  A] ( - t ) ' '  and A = 
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Table 1. (cont.) 
(iv) Trigonal,  tetragonal or hexagonal  systems: r = -t-1/3, 4 -1 /4 ,  4 -1 /6 ;  s .  76 0. 

An, n = B i ,  ~ = A2, n = Bx, n = O. B3, n is an independent  parameter.  A3, n = ?nB3,  n with ~n = (cn - -  1 ) / s n "  

AI,n 
A2, n 

A3, n 

B l ,  n 

B2. n 

B3, n 

A I ,  n A2, n A3, n BI ,  n B2, n B3, n 

0 0 0 0 0 0 
0 0 0 0 0 

2 2 
7n aB3.. 0 0 7n trY3,. 

0 0 0 

0 0 

0"23,  n 

" coefficients fit all the relevant symmetry  cases (e 1) It is verified from equation (22) that the expressions proposed for the o~ and c~ n = - 
shown in this table. 

sJ'J is either diagonal if the a tomj  is in a general position 
or takes a form similar to Si, i in the other cases. 27i, j 
is zero. 

3.3.2. Case (b). In this case, the 27i, j part of 27 
includes covariance terms owing to the dependence 
between the parameters of the two atoms and will be 
described by blocks N and Pn related to the average 
positions and to the Fourier terms of the nth harmonic, 
respectively. 

The relation between the average positions of the 
atomic pair is expressed by 

m 

x---J~ = R,~;~x~. (26) 

By application of the covariance definition, the rela- 
tion 

cov(~x-5~) = R~, 7 cov(x-~,~n) (27) 

is derived. F o r t /  = r ,  cov(x--~,~-~ coincides with 

var(x"~).'--" This relation can be written°ink" / the matrix form 

N=M'R.  (28) 

Similarly, the relation between the Fourier terms of 
the atomic pair is described by IY, j) = ILl Y/) for the 
nth harmonic; it turns out that 

P .  = S . L .  (29) 

Two typical examples of 27 matrix are given in Table 
3. 

4. The interatomic distance c.s.u. 

Knowledge of the 27 matrix now makes it possible to 
calculate the variance o .2 for the interatomic distances d, 
which can be considered as the sum of different terms. 
From (2), the following relation is found: 

0.2 = i i i (aolM Iao) + (GglMJlGg) 
i j j i 

+ (aolglao) + (aolNIao) 

.~_£ i i i ( <  j [(G/11S.IG/1) + IS/11<) 
n = l  

i p  • i + (a.I + (~IP/11G.)]. (30) 

The first part originates from the errors on the average 
coordinates while the second part describes the errors on 
the Fourier terms of the m harmonics. The components 
of (G~l__~d (G~I are the derivatives of d with respect to 
x~ and x/~, respectively. According to (5) and (3), they 
are given by the relations 

with 

Od/Ox~= (1/d)(Xlgl(OX/O~) I 

O X~ / O xi;~ = + 6~ ~ + 2 7r q*~ 

X {~n rl[Bi, ci A i i(t)]} . / 1 ( t ) -  ,~, .s .  

OX /O-M~= - 6,~ - 27rq*~ 

x {~n[BJ, /1cJ( t ) -AJ,  nsJ(t)] }.  

(31) 

(32) 

6 ~  is the Kronecker symbol, ci/1(t)= cos[27rn(~ + t)] 
i(t) = sin[27rn(~, + t)]- a n d  s n 

The components of (G'/11 and (G/~I are the derivatives 
of d with respect to A' B' and A j n j and are 
given by 

Od/OAi,. = [ci/1(t)/d](Xlgl~ 
Od/OB i, ,, s i = [ / 1 ( t ) / d ] ( X l g l ~  

Od/OA%/1 - ( t ) /d l  (Xlgl  
Od/OBL./1 = ( t ) /d]  (Xlgl , 

(33) 

<Xlgl,, denoting the c~ component of (Xlgl. 
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Table 2. Some typical examples of Xi,  i parts of the Xi, j matrices related to first-order Fourier terms of the 
d i s p l a c i v e  m o d u l a t i o n  o f  the  a t o m  i o f  a p a i r  i, j 

(a) Atom i on a site of symmetry ( ~ ) ' 7 -  = 1/4; in SSG P4(OOT)q;i belongs to (L) 

~ ,  A~ and B~ are independent parameters. 

YCil Yri2 Yd3 A ~ A i2 A i " " B i 3 s~ B~ 3 
0 0 
0 0 

0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 

2 2 0 0 0 0 %, 
0. B~ 

2 

"~ 0 - - 0  .2 0 0 
I 0.A i A~ 

0 0 0 0 
0.2 0 0 A'~ 

0.2 0 

0 

2 

~3 
All 

A~ 

A~ 

8~ 
B~ 

8~ 

(b) Atom i generated from atom p [belonging to (L)] by the (~ ) operator: r = 1/4; in SSG P422(OO'y)qO0 

-tz -t~ -t, A ~' , t, t, . n ~ x l ,  x 2, x 3, A 2, A 3, B~', B~' and 3 are independent parameters. 

Yril Yci2 Yd 3 A ~ A i2 A i3 Bil Bi2 Bi3 

2 0 0 0 0 0 0 0 0 0.=IL 
x 2 

0.2 0 0 0 0 0 0 0 

0.~. 0 0 0 0 0 0 
3[ 3 o~;_ o o o o o 

2 0 0 0 0 
B I 

a2., 0 0 0 
D 

3 

0.1; o o 
0.1: o 

°I; 

A~ 

A~ 

A~ 

B~ 
8h 
B~ 

(c) Atomigeneratedfromatomp[belongingto(L)]inspecialposi t ion ( 7 ) , b y t h e  ( 6 )  

~ ,  ~ ,  A~', A~, B~' and B~ are independent parameters. 

2 

a~ 
A'2 

a'3 
B~ 

8'2 

B'3 

Ycil Yd 2 Yd 3 A~ Ai9 Ai3 B~ Bi9 B~ 

0.~: -0.~: o o 
0 .2 0 0 

0 .2 0 

1 2 ~aa~ 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 
1 2 

- -  "4 0. A P 0 0 0 0 
2 

! 2 ~aae 0 0 0 0 
2 __~ o o o 

! 2 1 2 

1 2 
~ae~ 0 

2 

operator: 7- = 1/2; in SSG P6mm(OOT)sOs 
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0.2 

Table 3. Two typical examples of  S matrices related to the first-order Fourier terms of  the displacive modulation 
of  an atomic pair L j 

(a) A t o m s i a n d j r e l a t e d b y  ( 7 ) :  i b e l o n g s t o ( L )  ingeneralposi t ion;SSGP4mm(OOT)ssO 

~ ,  Yd 2, ~ ,  All , Aig, A~, B~, Bi2 and B~ are independent parameters. 

(i) The ~.~i,i matrix is the diagonal one obtained with all the independent parameters. 

(ii) SJ'J part of the K matrix. 

~ ~ A~ A~ A~ ~ ~ 
0 0 0 0 0 0 0 0 

A~, 
4 
% 

0.2 0 0 

o .2 0 v~ 
a 2 

A~ 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

a2, 0 0 0 0 

0 .2 0 0 0 A~ 
o.~ o o 

2 0 OrB, I 

0-2 
R~ 

(ii) ,_U i') part of the ~ matrix. 

(13 

A~ 
A'2 
A i 3 

B~ 
B'2 
B i 3 

0 0.2 0 0 0 0 0 0 0 

a 2 0 0 0 0 0 0 0 0 

0 0 0.2 0 0 0 0 0 0 
3 

o o o o o~,, o o o o 

o o o Oa~._ 0 0 0 0 0 

0 0 0 0 0 a2~.. 0 0 0 

0 0 0 0 0 0 0 0 .2. 0 R', 
0 0 0 0 0 0 0 .2 0 0 e~ 
0 0 0 0 0 0 0 0 0 .2 R~ 

~1, Yd3, a~, a i i B i 3' B2 and 3 are independent parameters. 

(i) ,._~i,i part of the S matrix. 

A] 

A~ 

A~ 

81 
8~ 

8~ 

i belongs to (L) in special position ( 7 ) ;  

Yl Yd2 ~3 A] Ai2 A i " 3 e~ B'2 B'3 
0.~, o 
o .2 0 

0 0 

0 0 

0 0 

0.2t --0.A 
A2 '2 

O.2 A~ 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

o .2 - - 0  .2 0 

o .2 0 n~ 
0 

0.2 
7d I 

SSG P4mm(O0 ., )sOs 
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(ii) ._wj,j part of the r matrix. 

2 

A'; 

d 2 

fll ~2 ~3 AJI A J2 A~ B/I ///2 13/3 

Table 3. (cont.) 

2 o.2 _ %  0 0 0 

0 0 0 

%2 0 0 

o.2 a~,:, 
A'2 

0 .2  
% 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

o.2 ,~ ~, 0 

o.~ 0 

0 

(iii) r i,j part of the S matrix. 

2 

a~ 

A i 3 

< 
R~ 

B'3 

Yr/1 Yd 2 ~a AJI A J2 A!-~ fia 1 B J2 B/3 

-o .~  o._2.~.,~ 0 0 0 0 0 0 0 

_o.2 ~, 0 0 0 0 0 0 0 
x" I O.x I 

0 0 o.~i 0 0 0 0 0 0 
"3 

0 0 0 --O.Ai --O .2` 2 A~ 0 0 0 0 

0 0 0 o.2 o.2 0 0 0 0 Ai Ai 
0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 - -O .B '  _O.2 0 
2 t~[ 

0 0 0 0 0 0 o.2 o.2 0 
_ B [  

0 0 0 0 0 0 0 0 0 

5. I l lu s t ra t ions  

The previous method has been applied in some chosen 
cases where intrinsic non-zero covariance terms are 
implied. These examples do not necessarily concern only 
modulated structures. Consider, for example,  a hypo- 
thetical structure in the hexagonal  system with space 
group P6mm (with a -- 8/~) with an atom i at the origin 
of the cell and an atom j in special position 6(d) [x -- 
y = 0.3500 (5)]. The distance AB is then calculated as 
2.8000 A with a c.s.u, of  0.0040/~. Without taking into 
account the covariance terms resulting from the special 
position of  the atom j, this c.s.u, would be calculated as 
0.0028/~. Furthermore, the c.s.u, corresponding to the 
symmetry-related distance ij', with j '  at (x, 0, 0) would 
not be calculated with the same value. 

Now consider the similar case of a hypothetical 
incommensurate structure with s ~ p a c e  group 
P4mm(O, 0, 7)sOs (a = b = 3.5, c = 10 ~,, 3' = 0.213) 
with an atom i at the origin of the cell and an 
atom j in special .posi t ion 4(d) [x = y = 0 .3500(5) ,  
a~ = 0.050 (2), B~ = 0.030 (2)1. Symmetry  constraints 
impose A~ = - a ~  and B~ = -B~  and aJ 3 = Bj 3 = 0. The 
corresponding S matrix is shown in Table 3(b) and the 
calculated bond length, d o, is represented a;  a function 

of t in Fig. 1; the curves correspond to d o + 30. and 
dij-t-30-*, where 0- is the rigorous calculation of the 
c.s.u, taking into account covariance terms and 0.* is an 
approximate value that does not take into account the 
covariance terms. The error in neglecting covariance 
terms in such a case is obvious. 

2.54 s -,. % f m ~  

eo°°oo ooeooo 

"~ 2.s0 

2.46 \ / \ / "1 
% / % f l 

! 
2 . 4 2  ' i ' I ' I ' l ' t 

0.0 0.2 0.4 0.6 0.8 1.0 

t 

Fig. 1. Solid line: interatomic distance dij versus t, in superspace 
group P4mm(OO2,)sOs with atom i at (0 ,0 ,0)  and atom j at 
(0.3500(5),0.3500(5),0).  Dotted lines: d o -4-3o., taking into 
account covariance terms; dashed lines: d o + 3o.*, taking into 
account no covariance term. 
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If we now look at three real examples of monoin- 
commensurate structures, it is possible to decide about 
the real significance of variations in interatomic dis- 
tances. When considering, for example, the small varia- 
tions of the Te--Te distance in N b T e  4 (van Smaalen & 
Bronsema, 1986) (Fig. 2) and the larger interatomic vari- 
ations of the Zn---C1 and C1--C1 distances in Rb2ZnC14 
(H6doux & Grebille, 1989) (Fig. 3), it can be seen that 
the former are significant because of the very small c.s.u. 
values of the refined parameters in this structure refine- 

2.98 

2.94 

2.90 

' I ' I ' I ' I ' 

0.0 0.2 0.4 0.6 0.8 1.0 

t 

Fig. 2. Te--Te interatomic distances in NbTe 4 (van Smaalen et al., 
1986). Error bars correspond to -t-3tr. 

2.35 

2.30 -J 

N 
2.25 

~" 2.2o ~ 

2.15 i ' , ' i ' ' ' I I 

0.0 0.2 0.4 0.6 0.8 1.0 

t 
(a) 

3.85 

3.80 

3.75 

° .... Io . i  
 .70 . .  "2 
3.65 e~ 

3.60 ""  

3.55 i ' l , i 

0.0 0.2 0.4 0.6 0.8 1.0 

t 

(b) 

Fig. 3. Interatomic distances in RbzZnCI 4 (H6doux & Grebille, 
1989): (a) Zn---CI(1) (solid line) and Zn--CI(2) (dotted line); (b) 
C1(1)----C1(2) (solid line), C1(1)----C1(3) (dotted line), C1(1)---C1(4) 
(dashed line), C1(3)---C1(4) (crosses). Error bars correspond to -t-3a. 

ment. In the second case, however, because of the larger 
uncertainty on the refined parameters, one can consider 
that the corresponding interatomic distances are constant 
within the experimental error. Thus, the global motion 
of the ZnC14 tetrahedra is to a good approximation rigid- 
body motion. In the first case, calculations of the c.s.u. 
for Te--Te distances lead to an average value of 0.0020; 
without taking into account the covariance terms due to 
the symmetry relation between the two atoms, the c.s.u. 
would have been calculated as 0.0015. 

A recent study of the modulated structure of the so- 
called Bi2212 superconducting copper oxide (Grebille, 
Leligny, Ruyter, Labb6 & Raveau, 1996) showed that 
disorder in the location of the Bi atom occurs. The 
distance between the two split Bi sites is shown in 
Fig. 4 as a function of the internal variable t and the 
corresponding c.s.u, is also given. In this particular case, 
the disorder is clearly significant for 0.7 _< t < 1.1 
(modulo 1); for the other values of t, however, one 
can consider that the deviation of the value of this 
distance from zero is not significant with regard to 
the corresponding c.s.u. Rigorously speaking, it should 
appear siginificant according to the usual 30 criterion 
as is represented in Fig. 4 but the proposed value of 
the c.s.u, in this study is probably underestimated. In 
fact it supposes that the structural model chosen for 
the refinement is reliable but only two orders could be 
introduced for the Fourier expansion of the displacement 
functions; this limitation is already an approximation. 

6. Conclusions 

In the structural study of incommensurate or commen- 
surate modulated structures, particular attention should 
be paid to the derivation of interatomic distances and to 
the interpretation of their variations as a function of the 
phase variable of the modulation functions. A careful 
calculation of these values should also be accompanied 
by a realistic estimation of the related combined standard 
uncertainty. This is not always an easy task since it 

0.8 

0.6 
~a 

0 . 4  

0.2 

0.0 i i 

0.0 0.2 0.4 0.6 0.8 1.0 

t 

Fig. 4. Bi--Bi  interatomic distances between the two disordered 
Bi sites in BizSrzCaCuzOs+ ~ (Grebille et al., 1996). Error bars 
correspond to -t-3a. 
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assumes that all the variance terms of the independent 
parameters involved in the definition of the periodic 
modulation functions have been taken into account. The 
present study gives a detailed description of a method 
of calculation of the c.s.u., which takes into account 
all the variance terms attached to the relative atomic 
modulated coordinates and all the possible covariance 
terms resulting from linear relations imposed by sym- 
metry considerations. It neglects the variance on the 
values of the cell parameters and of the components 
of the modulation wave vector, which are supposed 
to be known to within very good accuracy. From all 
the possible symmetry constraints, general formulas are 
proposed for the corresponding linear relations, which 
allow a general matrix form for the c.s.u, to be derived. 

Consequently, a rigorous determination of the c.s.u, of 
interatomic distances as well as their possible variation 
as a function of the phase variable of the modulation 
can be given. It has allowed us to give justified in- 
terpretations of structural results in terms of rigid-body 
motion or of residual disorder. Nevertheless, one has to 
bear in mind that the present estimation can only give 
an underestimated value because it supposes that the 
structural model used to describe the crystal structure 
exactly is reliable and sufficient. 

A P P E N D I X  A 

Two methods can be used to derive the variance of a 
function f ( P l '  Pz . . . . .  Pi . . . .  ), where the Pi variables are 
not necessarily independent. Either, as in the present 
study, cr~ !s calculated taking into account the variance 
and covarlance terms associated with the Pi variables 
or f is expressed as a function of a reduced set of 
independent parameters and ~r} is estimated from their 
corresponding c.s.u, without any covariance term. The 
present Appendix shows that both methods are formally 
equivalent in the case where only linear relations are 
involved between the p~ parameters. 

For instance, let us assume that the parameter Pk is 
related to the Pk+l and Pk+2 parameters through the 
linear relation 

Pk : OZPk+l q-/3Pk+2' 

+ 2[(Of/OPk)(Of/OPk+,)COV(pk,Pk+l) 

+ (of/op )(af/ap +z)cov(pk, 

where Z (n x n) includes covariance terms. 
From var(pk) = a2var(pl,+l) + flZvar(Pk+2) and 
COV(pk, pk+l ) = ct var(Pk+l)  , COV(pk,pk+2 ) = 
/3 var(pk+2), it follows that 

0"~ ~' ( Of/Opl )2 var(Pl ) --~ . . .  

+ (OflOp +, + .oflOp ) var(pk+, )  

+ (Of/OPk+ 2 + 30f/Opk)2var(Pk+2) q - . . .  

4- (Of/Opn) 2 Var(pn) 

= 

where Z '  [ ( n -  1) x ( n -  1)] is a diagonal matrix and the 
components of (G'[ [1 x (n - 1)] are the derivatives of 

F = f (Pl  . . . .  ,Pk(Pk+l'Pk+2),Pk+l'P~,+2 . . . . .  Pn) with 
respect to the independent parameters; (Of/OPk+~ 4- 
c~Of/OPk ) and (Of/OPk+2 +/30f/Opk ) stand for OF/Opk+l 
and OF/OPk+2, respectively. Consequently, if true linear 
relations are implied between some parameters, an esti- 
mation of or} can be given using either the (GIS IG)  or 
the (G'IS'IG') relation. 

A P P E N D I X  B 

When an atom sits on a special position for a symmetry 
operation (R, e, r), the refinement parameters Am, ,, and 
B~,, of the cos and sin terms of the a components of 
the nth-order Fourier term of the displacive modulation 
are constrained. In the present Appendix, all possible 
corresponding linear relations are given for c~ = 1, 2 
(standard settings of the superspace groups). These linear 
relations depend on the values of e and nr.  

In all cases not tabulated in the present Appendix, no 
linear relation occurs either because the corresponding 
refinement parameters are constrained to be zero or 
because they are free and are independent parameters. 

where  Pk+l and Pk+2 are independent parameters de- 
rived, for example, from a least-squares refinement. 

Considering the other parameters as strictly indepen- 
dent, (1) leads to 

(of/Op )2 var(p,) + ... + (of/Op )2 var(pk) 

+ (Of/Opk+l)2var(pk+,) 

+ (Of/OPk+2)2var(Pk+2) + . . .  

+ (Of/Opn)Zvar(p,~) 

B 1 .  Cases  wi th  ~ = +1 

When they exist, the linear relations can always be 
written as (24): 

A I. ,~ = °~,,A2. n +/3,,B2. n 

BI. n = -[3nA2. ,, + °znB2. n" 

% and/3 n are expressed as a function of s,, = sin(27rnr) 
and c n = cos(27rnr). 

In all these cases, /'~n = sn" 
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n T  

0,1 /2  
0,1/2 

0 
1/2 
0 

1/2 
1/4 ,3/4  
1/3 ,2/3  
1/6 ,5/6  

System Sym. op. c~n nr System Sym. op. Case 

Trig., hex., tetr. m~_~,~ -cn 1/2 Trig., hex. 22~.~,o (iii) 
Trig., hex., tetr. m~a,z c, 0 Trig., hex. 2~.o,o (iii) 

Trig., hex. mz~.~= 2 1/2 Trig., hex. 2~,o,o (ii) 
Trig., hex. mo,,,,: 2 0 Trig., hex. 2~,z~.o (ii) 
Trig., hex. m~,z~,z 1/2 1/2 Trig., hex. 2~,Zx,O (iii) 
Trig., hex. mx.o.z 1/2 1/4, 3/4 Tetr. 4o.o,z (iv) 

Tetr. 40,0= 0 

Trig., hex. 3o,o,z - c ,  J. Lejeune (Department of  Mathematics,  University 
Trig., hex. 6o.O.z c, of  Caen) is gratefully acknowledged for helpful discus- 

sions. 

B 2. C a s e s  w i t h  e = - 1  

When they exist, the linear relations can always be 
expressed by one of the following forms: 

(i) A u _,At~ and B~ = ^ " B  t' simultaneously 1, n - -  t X n " t 2 ,  n n t t n  2, n 

with c~" = " r/ - -  (ll~n ' 

(ii) A ~' , u 1, n : °znA2, n' no linear relation for Btl ',,~ and 
B ~, 

2, n ;  

(iii) B~' = ^ " B "  ,, 't,, 2, n, no linear relation for A~, ,7 and 
A~ n; 

I t  (iv) A3, ,, = 7,,B~ I ,,, no linear relation for A u A~, 
. ,  I ,  n '  n '  

B~ and B u t/ 2,  r/" 

nr  System Sym. op. Case ~'n ~" 

0, 1/2 Trig., hex., tetr. 2x.~.o (i) cn -c~ 
0, 1/2 Trig., hex., tetr. 2x.-x,O (i) - c ,  c, 

0 Trig., hex. 2O,y,O (iii) 2 
1/2 Trig., hex. 2O,y,O (ii) 2 
0 Trig., hex. 22~.~.o (ii) 2 

")n 

t 
~ n  

1/2 
1/2 

t! 
Ol n 

2 
1/2 

1/2 
- - S n  
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